

pacorabadan.com

6. Distribuciones Bidimensionales

ESTADÍSTICA DESCRIPTIVA

DR. FRANCISCO RABADÁN PÉREZ

Índice

- 1. Distribución Bidimensional de frecuencias
- 1. Independencia y relación funcional
- 2. Tablas de doble entrada: correlación y contingencia
- 3. Distribuciones Marginales
- 4. Distribuciones condicionadas
- 5. Independencia Estadística
- 2. Representaciones gráficas

Apéndice: Momentos de distribuciones bidimensionales

1. Distribución bidimensional de frecuencias

Variable bidimensional (x_i, y_i)

Podemos estudiar ambas variables <u>por separado</u>.

Lo mas interesante es ver <u>qué relación</u> <u>existe entre ambas</u>.

Si observamos una relación de dependencia, podemos formular la hipótesis de una relación causal.

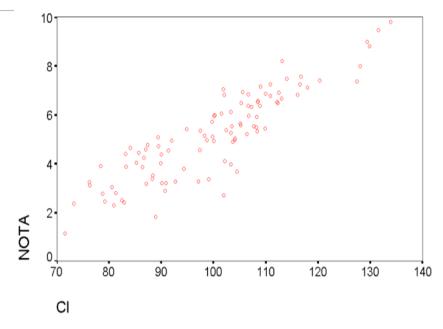
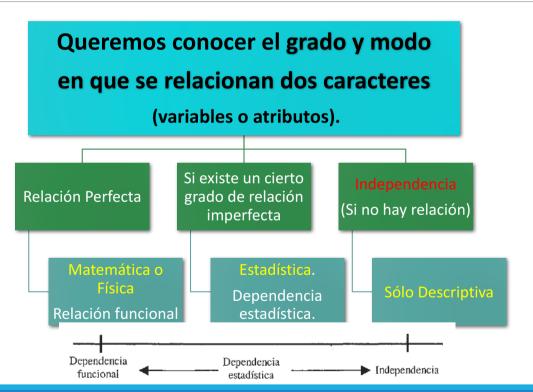


Diagrama de dispersión: http://matematicas1bc.blogspot.com.es/2012/05/estadistica. html

1.1. Independencia y relación funcional de (X,Y)



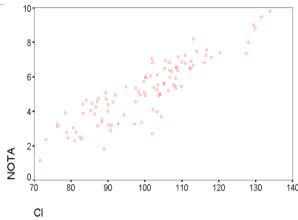
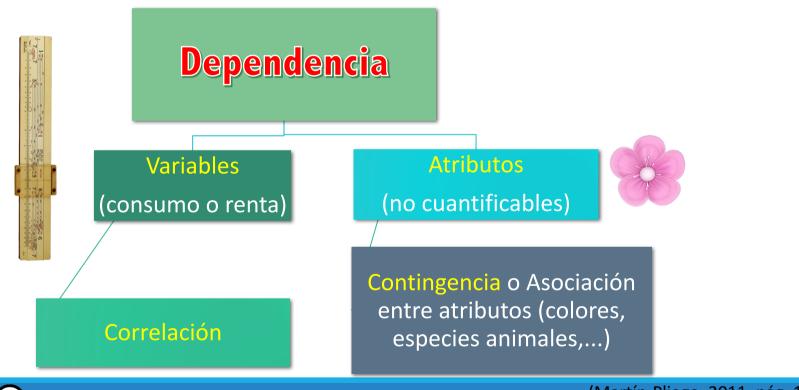


Diagrama de dispersión: http://matematicas1bc.blogspot.com.es/2012/0 5/estadistica.html

(Martín-Pliego, 2011, pág. 199)

1.1. Independencia y relación funcional de (X,Y)



	y ₁	y ₂		Yj		y _k	n _{i.}
x ₁	n ₁₁	n ₁₂	•••	n _{1j}	•••	n _{1k}	n _{1.}
X ₂	n ₂₁	n ₂₂		n _{2j}		n_{2k}	n _{2.}
X ₃	n ₃₁	n ₃₂	•••	n _{3j}	•••	n_{3k}	n _{3.}
						n_{4k}	n _{4.}
				n _{ij}			n _{i.}
X _n	n _{h1}	n _{h2}	•••	n _{hj}		n_{hk}	n _{h.}
n _{.j}	n _{.1}	n _{.2}	n _{.j}	n _{.j}		n _{.k}	N

- La tabla de doble entrada se puede transformar, por ejemplo, para facilitar el cálculo en una tabla de 3 columnas.
- Las dos primeras columnas indican el par (x_i, y_j)
- La tercera columna contiene la frecuencia conjunta asociada (n_{ii} u otras)

X _i	y _j	n _{ij}
X ₁	y ₁	n ₁₁
x ₂	y ₂	n ₁₂
X ₃	y ₃	n ₁₂
		•••
X _i	x _j	
		•••
X _n	\mathbf{y}_{k}	n _{h2}

Tipos de frecuencias

- Frecuencia absoluta conjunta (n_{ii})
- Frecuencia relativa conjunta (fii)

$$f_{ij} = \frac{n_{ij}}{N}$$

- Frecuencia acumuladas (F_{i*}, o F_{*i})::
 - Acumular respecto a x
 - Acumular respecto a y
 - Acumular simultáneamente.

X _i	y _j	n _{ij}
X ₁	y ₁	n ₁₁
X ₂	y ₂	n ₁₂
X ₃	y ₃	n ₁₂
		•••
x _i	x _j	
X _n	\mathbf{y}_{k}	n _{h2}

- La primera fila (y_j) y la primera columna (x_i) muestran los valores ordenados de las variables.
- Dentro de la tablas vemos la frecuencia conjunta (n_{ij}): podrían ser también
 - relativas(f_{ij}),
 - acumuladas (N_{ii}), o
 - relativas acumuladas (F_{ij}).

	y ₁	y ₂		y j	•••	y _k	n _{i.}
x ₁	n ₁₁	n ₁₂	•••	n _{1j}	•••	n_{1k}	n _{1.}
x ₂	n ₂₁	n ₂₂		n _{2j}		n_{2k}	n _{2.}
x ₃	n ₃₁	n ₃₂	•••	n _{3j}	•••	n_{3k}	n _{3.}
			•••		•••	n_{4k}	n _{4.}
				n _{ij}			n _{i.}
X _n	n _{h1}	n_{h2}		n _{hj}		n_{hk}	n _{h.}
n _{.j}	n _{.1}	n _{.2}	n _{.j}	n _{.j}		n _{.k}	N

1.3. Distribuciones marginales

• Frecuencia marginal:

- No nos importa el valor que toma la otra variable.
- Coincide con la frecuencia de la variable unidimensional.
- Ponemos un *, donde la variable no importa que tome cualquier valor.

$$n_{i.} = \sum_{j=1}^{k} n_{ij}$$

$$n_{j\cdot} = \sum_{i=1}^{h} n_{ij\cdot}$$

f. absoluta Marginal de X f. absoluta Marginal de Y

$$\sum_{i=1}^{n} n_{i.} = \sum_{j=1}^{k} n_{.j} = \sum_{i=1}^{n} \sum_{j=1}^{k} n_{ij} = N$$

		y ₂	•••	Yj	•••	Y _k	n _{i.}
X ₁	n ₁₁	n ₁₂	•••	n _{1j}	•••	n_{1k}	n _{1.}
	n ₂₁	n ₂₂	•••	n _{2j}	•••	n _{2k}	n _{2.}
X ₃	n ₃₁	n ₃₂	•••	n _{3j}	•••	n_{3k}	n _{3.}
		•••	•••	•••	•••	n_{4k}	n _{4.}
	•••	•••			•••		n _{i.}
X _n	n _{h1}	n _{h2}	•••	n _{hj}	•••	n_{hk}	n _{h.}
n _{.j}	n _{.1}	n _{.2}	n _{.i}	n _{.j}		n _{.k}	N

1.4. Distribuciones condicionad 99-Pliego, 2011, pág. 203)

- Estudiamos las frecuencias de una variable para un conjunto concreto de valores de la otra.
- Ej:
 - $\mathbf{x_i}/(\mathbf{y_1,y_2})$: (x_i, n_{ij}) siendo $y_i=(y_1,y_2)$
 - y_i/x_4 : (y_j, n_{ij}) siendo $x_i=x_4$
- Notese que "/" no significa división, sino "condicionado a"
- En el caso de que esté condicionado a un único valor, la anotaremos como

$\left(\frac{1}{j},\frac{1}{i}\right)_{i}$		$n_{i_{/_j}}$;	$n_{j_{ightarrow i}}$
--	--	-----------------	-----------------------

Podemos calcular las frecuencias condicionadas relativas dividiendo por el total de datos que cumplen la característica condicionante

$$f_{i/j} = \frac{n_{ij}}{n_{.j}}$$

	$_{-}$ n_{ij}	f.	 n_i
i/j	$-\overline{n_{i}}$	J_{i}	$\overline{n_i}$

 x_i/y_2

 x_1

 x_2

 x_{i}

 $x_{\rm h}$

 $n_{i/2}$

 n_{12}

 n_{22}

 n_{i2}

 $n_{\rm h2}$

 $n_{.2}$

f.	_	n_{i}	j
$J \iota_{j}$	_	\overline{n}	- i

 x_i/y_i

 x_1

 $\boldsymbol{x_2}$

 x_{i}

 $x_{\rm h}$

 $n_{i/i}$

 n_{1i}

 n_{2i}

 n_{ii}

 $n_{
m hi}$

 $n_{\cdot i}$

1.4. Distribuciones condicionadas

EJEMPLO

Sea la siguiente tabla de doble entrada

х	1	2	3	4	n _i .
5	1	2	1	3	7
10	2	1	3	2	8
15	3	2	1	2	8
$n_{.j}$	6	5	5	7	23

C.	wide		lane!	lan.
26	pide	Ld.	ICU.	ldI.

- (a) La distribución marginal de la Y.
- (b) La distribución condicionada de X/Y = 2.

У,	n.j	n _{ej/N}
1	6	6/23
2	5	5/23
3	5	5/23
4	7	7/23
	23	1

X _{i/y = 2}	n _{i/2}	$f_{\psi 2}$
5	2	2/5
10	1	2/5 1/5
15	2	2/5
	5	1

1.5. Independencia estadística

"Dos variables X e Y se dice que son estadísticamente independientes cuando la frecuencia relativa conjunta es igual al producto de las frecuencias relativas marginales" (Martín-Pliego, 2011; pág 205)

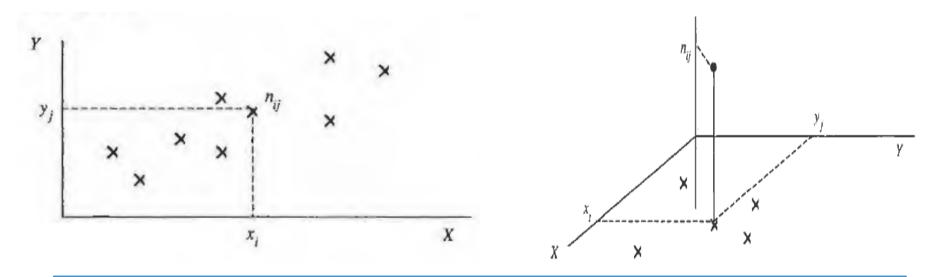
$$\frac{n_{ij}}{N} = \frac{n_{i.} n_{.j}}{N}, \quad \forall (i,j) \rightarrow \begin{cases} f_{i/j} = \frac{n_{ij}}{n_{.j}} = \frac{n_{i.} \frac{n_{.j}}{N}}{n_{.j}} = \frac{n_{i.}}{N} \\ f_{j/i} = \frac{n_{ij}}{n_{i.}} = \frac{n_{.j} \frac{n_{i.}}{N}}{n_{i.}} = \frac{n_{.j}}{N} \end{cases}$$

(Martín-Pliego, 2011, pág. 205)

"..., las frecuencias relativas condicionadas son iguales a sus correspondientes frecuencias relativas marginales, lo que nos indica que el condicionamiento, en cuanto tal, no existe: las variables son independientes, puesto que en las distribuciones marginales se estudia el comportamiento de una variable con independencia de los valores que pueda tomar la otra" (Martín-Pliego, 2011; pág 205)

2. Representaciones gráficas

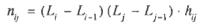
Nube de puntos o diagrama de dispersión



Se puede realizar también con datos agrupados utilizando la marca de clase.

2. Representaciones gráficas

Escalograma (datos agrupados)





Apéndice: momentos en distribuciones bidimensionales

Respecto
$$r = 1, s = 0 \rightarrow a_{10} = \bar{x}$$

al origen
$$r = 0, s = 1 \rightarrow a_{01} = \bar{y}$$

$$a_{rs} = \sum_{i} \sum_{j} \frac{x_i^r y_j^s n_{ij}}{N}$$

Respecto a

$$m_{11}$$
=cov(x,y)

$$m_{rs} = \sum_{i} \sum_{j} \frac{(x_i - \bar{x})^r (y_j - \bar{y})^s n_{ij}}{N}$$

Mas en (Martín Pliego, 2011; pag. 68-72)

Apéndice: momentos en distribuciones bidimensionales

Recordemos

Los momentos respecto a la media y respecto al origen se diferencian en un cambio de escala.

• Los a, tienen como origen el cero, y los m, en \bar{x}

Los momentos respecto a la media se pueden calcular partiendo de los momentos respecto al origen aplicando el binomio de Newton.

$$m_{20} = a_{20} - a_{10}^2 V(x)$$

$$m_{02} = a_{02} - a_{01}^2 V(y)$$

$$m_{11} = a_{11} - a_{10}a_{01} COV(x,y)$$

Textos recomendados

 Martín-Pliego, Introducción a la Estadística Económica y Empresarial, Editorial AC, 2011, 3ª Edición

Prácticas recomendadas

Ejercicios: los veremos en el capítulo 9

Ejercicios resueltos en clase

Prácticas y recursos web (aula virtual)

¿Quieres saber más?

- Ver 7.3.4 y 7.3.5 en Martín-Pliego
- El Capítulo 8 (Interpolación y ajuste) no entra en el temario del curso 2016/2017, pero es muy interesante.

