

pacorabadan.com

13. Tasas de variación

ESTADÍSTICA DESCRIPTIVA

DR. FRANCISCO RABADÁN PÉREZ

Índice

Variación temporal de variables económicas y su medida

- 1.1. Variación absoluta
- 1.2. Variación relativa

Tasas Medias de Variación

Cálculo aproximado de tasas de variación.

Apéndice: algunas operaciones

1. Variación temporal de variables económicas y su medida

Series temporales: reflejan patrones de comportamiento en la variación temporal.

Tasas: nos interesa la variación inter-temporal (entre periodos).

Variación absoluta:

• Sea una serie temporal $y_1, y_2, ... y_T$ la **variación absoluta** será

$$VA(Y_t) = \Delta Y_t = y_t - y_{t-1} \Longrightarrow \begin{cases} \Delta Y_t > 0 \\ \Delta Y_t = 0 \\ \Delta Y_t < 0 \end{cases}$$

Decrecimiento

Constante

Decrecimiento

<u>Suficiente en cuanto al signo</u>, pero <u>insuficiente en cuanto a unidades de medida</u> → Necesitamos medidas adimensionales para poder comparar

pacorabadan.com

1.2. Variación relativas

Vamos a transformar la variación absoluta a una medida relativa: para solucionar el problema de las unidades de medida eliminando las diferencias de escala.

Definiremos Tasa de Variación y_t^* como:

$$y_t^* = \frac{VA(y_t)}{y_{t-1}} = \frac{\Delta y_t}{y_{t-1}} = \frac{y_t - y_{t-1}}{y_{t-1}} = \frac{y_t}{y_{t-1}} - 1 \Rightarrow \begin{cases} y_t^* > 0 \\ y_t^* = 0 \\ y_t^* < 0 \end{cases}$$
 Aumento Constante Decrecimien

- Medida expresada en tanto por uno, y habitualmente expresada en porcentaje multiplicando por cien
- Ventaja: carácter adimensional → Permite comparar distintas series temporales aunque vengan expresadas en distintas unidades de medida.

4. Tasas medias de variación.

La Tasa Media es la media geométrica de los factores de variación unitaria de cada periodo menos la unidad.

El factor de variación unitaria del periodo k-ésimo:

$$1 + T(k) = 1 + \left(\frac{y_k}{y_{k-1}} - 1\right) = \frac{y_k}{y_{k-1}}$$

La tasa media de variación será:

$$TM = \sqrt[n]{\prod_{i=1}^{n} [1 + T(i)] - 1}$$

Conclusiones:

- Calcular la TM de variación a partir de la media aritmética es un error que nos lleva a resultados equivocados.
- <u>La verdadera TM</u>, ni si quiera se calcula a través de la media geométrica de las tasas mensuales, sino a través de la media geométrica de los factores de variación unitaria restando posteriormente la unidad.

Adecuado para determinar un indicador de inflación anual de acuerdo a la inflación registrada en el IPC mensualmente

5. Cálculo aproximado de tasas de variación.

Sea la tasa de variación entre dos periodos: $Y_t = Y_{t-1}(1 + Y_t)$

Es posible encontrar una constante de proporcionalidad p_t tal que $1 + Y_t = e^{p_t Y_t}$

Por tanto
$$e^{p_t Y_t} = \frac{y_t}{y_{t-1}}$$

Y Tomando logaritmos $p_t Y_t = L_n \frac{y_t}{y_{t-1}}$ de donde deducimos que

$$y_t^* \simeq L_n \left(\frac{y_t}{y_{t-1}} \right)$$

Cálculo aproximado de tasas en base al logaritmo del índice entre periodos

El error de aproximación dependerá de la constante de proporcionalidad p_t y que además depende de v_t^*

IMPORTANTE

El error será tanto más aceptable cuanto menor sea la tasa de variación y_t^*

Dados los datos expresados en la siguiente tabla

t	Precio	IPC	Deflactor (base t=1)	P Real
1	10	101	101/101	10
2	15	102	102/101	x_2
3	20	103	103/101	x_3

Cálculo del deflactor en base al IPC

Seleccionamos un periodo base

$$d_1^1 = \frac{IPC(0)}{IPC(0)} = 1$$

$$d_1^2 = \frac{IPC(2)}{IPC(1)} = \frac{102}{101}$$

$$d_1^3 = \frac{IPC(3)}{IPC(1)} = \frac{103}{101}$$

$$d_{base}^{t} = \frac{IPC(t)}{IPC(base)}$$

Dados los datos expresados en la siguiente tabla

t	Precio	IPC	Deflactor (base t=1)	P Real
1	10	101	101/101	10
2	15	102	¹⁰² / ₁₀₁	$x_2 = \frac{15}{\binom{102}{101}}$
3	20	103	103/ ₁₀₁	$x_3 = \frac{20}{(^{103}/_{101})}$

Pasar de precios en términos nominales a precios en términos reales

$$x_2 = \frac{15}{(102/_{101})}$$
 $x_3 = \frac{20}{(103/_{101})}$

Dividimos por el deflactor

Pasar de precios en términos reales a precios en términos nominales

$$x_2(^{102}/_{101}) = 15$$
 $x_3(^{103}/_{101}) = 20$

Multiplicamos por el deflactor

Dados los datos expresados en la siguiente tabla

t	Precio	IPC	Deflactor (base t=1)	P Real
1	10	101	101/ ₁₀₁	10
2	15	102	¹⁰² / ₁₀₁	$x_2 = \frac{15}{\binom{102}{101}}$
3	20	103	103/ ₁₀₁	$x_3 = \frac{20}{\binom{103}{101}}$

Tasa de crecimiento en términos nominales

$$T^{*2}_{1} = \frac{15}{10} - 1$$
 $T^{*3}_{1} = \frac{20}{10} - 1$

Dividimos por precios corrientes

Tasa de crecimiento en términos reales

$$T_{1}^{*2} = \frac{x_2}{10} - 1$$
 $T_{1}^{*3} = \frac{x_3}{10} - 1$

Dividimos por precios en términos reales

Dados los datos expresados en la siguiente tabla

t	Precio	IPC	Deflactor (base t=1)	P Real
1	10	101	101/101	10
2	15	102	¹⁰² / ₁₀₁	$x_2 = \frac{15}{\binom{102}{101}}$
3	20	103	103/ ₁₀₁	$x_3 = \frac{20}{\binom{103}{101}}$

Hacemos la media geométrica de (max (t) -1) porque perdemos un periodo

Tasa media de crecimiento en términos nominales

$$TM^* = \sqrt[3-1]{\frac{20}{10}} - 1$$

Tasa media de crecimiento en términos reales

$$TM^* = \sqrt[3-1]{\frac{x_3}{10}} - 1$$

Textos recomendados

• Martín-Pliego, *Introducción a la Estadística Económica* y *Empresarial*, Editorial AC, 2011, 3º Edición

Prácticas recomendadas

Ejercicios: Martín-Pliego, 2011; pág. 531-551 • 7.1.a y 7.1.c; 7.2, 7.3, 7.4,7.5,7.6.

Ejercicios resueltos en clase

Prácticas y recursos web (aula virtual)

